Victron BMS 12/200 Batterie-Management-System 12 V / 200 A

455,09 kr

BMS 12/200 für 12,8 Volt Lithium-Eisenphosphat-Batterien Speziell für Fahrzeuge und Boote konstruiert Warum Lithium-Eisenphosphat? Die Lithium-Eisenphosphat (LiFePO4 oder LFP)-Batterie ist der sicherste der regulären Lithium-Eisen-Batterietypen. Die Nennspannung einer LFP Zelle beträgt 3,2 V (Blei-Säure: 2 V/Zelle). Eine 12,8 V LFP-Batterie besteht daher aus 4 in Reihe geschalteten Zellen und eine 25,6 V Batterie besteht aus 8 in Reihe geschalteten Zellen. Gründe für die Notwendigkeit eines Batterie-Management-Systems (BMS): 1. Eine LFP-Batterie wird beschädigt, wenn die an der Zelle anliegende Spannung auf einen Wert unter 2,5 V fällt. 2. Eine LFP-Batterie wird beschädigt, wenn die an der Zelle anliegende Spannung auf einen Wert über 4,2 V ansteigt. Blei-Säure-Batterien können unter Umständen auch beschädigt werden, wenn sie zu tief entladen bzw. überladen werden, jedoch geschieht das meist nicht sofort. Eine Blei-Säure-Batterie wird sich von einer Tiefenentladung erholen, selbst, wenn sie mehrere Tage oder sogar Wochen in entladenem Zustand belassen wurde (abhängig vom Batterie-Typ und der Marke). 3. Die Zellen einer LFP-Batterie führen am Ende des Ladezyklus keinen automatischen Ausgleich durch. Die Zellen in einer Batterie sind nie zu 100 % gleich. Aus diesem Grund sind einige Zellen beim Zyklisieren früher voll aufgeladen bzw. entladen, als andere. Diese Unterschiede werden stärker, wenn die Zellen nicht von Zeit zu Zeit ausgeglichen werden. In einer Blei-Säure-Batterie fließt ein geringer Strom weiter, auch, wenn eine oder mehrere Zellen voll aufgeladen sind (der Haupteffekt dieses Stroms ist die Spaltung von Wasser in Wasser- und Sauerstoff). Mithilfe dieses Stroms werden die anderen Zellen, deren Ladezustand hinterherhinkt, ebenso geladen und so wird der Ladezustand aller Zellen ausgeglichen. Der Strom, der durch eine LFP-Zelle fließt ist, wenn diese voll geladen ist, jedoch so gut wie Null. Weniger geladene Zellen werden aus diesem Grund nicht voll aufgeladen. Der Unterschied zwischen den einzelnen Zellen kann mit der Zeit so extrem groß werden, dass, obwohl die Gesamtspannung der Batterie innerhalb der Begrenzungen liegt, einige Zellen aufgrund von Über- bzw. Unterspannung zerstört werden. Eine LFP-Batterie muss daher durch ein BMS geschützt werden, das die einzelnen Zellen aktiv ausgleicht und so eine Unter-bzw- Überspannung verhindert. Robust Eine Blei-Säure-Batterie wird in folgenden Fällen aufgrund von Sulfatierung vorzeitig versagen: • Wenn sie lange Zeit in unzureichend geladenem Zustand in Betrieb ist (die Batterie wird selten oder nie voll aufgeladen). • Wenn sie in einem teilweise geladenen oder was noch schlimmer ist, völlig entladenen Zustand belassen wird (Yacht oder Wohnmobil während des Winters). Eine LFP-Batterie muss nicht voll aufgeladen sein. Die Betriebslebensdauer erhöht sich sogar noch leicht, wenn die Batterie anstatt voll nur teilweise aufgeladen ist. Darin liegt ein bedeutender Vorteil von LFP-Batterien im Vergleich zu Blei-Säure-Batterien. Weitere Vorteile betreffen den breiten Betriebstemperaturenbereich, eine exzellente Zyklisierung, geringe Innenwiderstände und einen hohen Wirkungsgrad (siehe unten). Die LFP Batterie ist daher die beste Wahl für den anspruchsvollen Gebrauch. Effizient Bei zahlreichen Einsatzmöglichkeiten (insbesondere bei netzunabhängigen Solar- und/oder Windkraftanlagen), kann der Energienutzungsgrad von ausschlaggebender Bedeutung sein. Der Energienutzungsgrad eines Ladezyklus (Entladen von 100 % auf 0 % und Wiederaufladen auf 100 %) einer durchschnittlichen Blei-Säure-Batterie liegt bei ca. 80 %. Der Energienutzungsgrad eines Ladezyklus einer LFP-Batterie liegt dagegen bei 92 %. Der Ladevorgang einer Blei-Säure Batterie wird insbesondere dann ineffizient, wenn die 80 %-Marke des Ladezustands erreicht wurde. Das führt zu Energienutzungsgraden von nur 50 %. Bei Solar-Anlagen ist dieser Wert sogar noch geringer, da dort Energiereserven für mehrere Tage benötigt werden (die Batterie ist in einem Ladezustand zwischen 70 % und 100 % in Betrieb). Eine LFP-Batterie erzielt dagegen noch immer einen Energienutzungsgrad von 90 %, selbst wenn sie sich in einem flachen Entladezustand befindet. Größe und Gewicht Platzeinsparung von bis zu 70 % Gewichteinsparung von bis zu 70 % Unendlich flexibel LFP-Batterien lassen sich leichter aufladen, als Blei-Säure-Batterien. Die Lade-Spannung kann zwischen 14 V und 16 V variieren (so lange an keiner der Zellen mehr als 4,2 V anliegen). Außerdem müssen diese Batterien nicht voll aufgeladen werden. Aus diesem Grund lassen sich mehrere Batterien parallel schalten und es tritt keine Beschädigung auf, wenn einige Batterien weniger geladen sind, als andere. Unser 12 V BMS unterstützt bis zu 10 parallelgeschaltete Batterien (BTVs sind einfach ver-kettet). Ein 12 V BMS, der den Wechselstromgenerator (und die Verkabelung) schützt und bis zu 200 A für jede beliebige DC-Last (einschließlich Wechselrichter